https://106c4.wpc.azureedge.net/80106C4/Gallery-Prod/cdn/2015-02-24/prod20161101-microsoft-windowsazure-gallery/microsoft-ads.linux-data-science-vm-ubuntulinuxdsvmubuntu.1.0.10/Icons/Large.png

Data Science Virtual Machine for Linux (Ubuntu)

Microsoft
Virtual machine with deep learning frameworks and tools for machine learning and data science
Вы получите электронное письмо с предложением бесплатно попробовать тестовый выпуск на своем компьютере.
https://106c4.wpc.azureedge.net/80106C4/Gallery-Prod/cdn/2015-02-24/prod20161101-microsoft-windowsazure-gallery/microsoft-ads.linux-data-science-vm-ubuntulinuxdsvmubuntu.1.0.10/Screenshots/Screenshot1.png
https://106c4.wpc.azureedge.net/80106C4/Gallery-Prod/cdn/2015-02-24/prod20161101-microsoft-windowsazure-gallery/microsoft-ads.linux-data-science-vm-ubuntulinuxdsvmubuntu.1.0.10/Screenshots/Screenshot1.png
https://106c4.wpc.azureedge.net/80106C4/Gallery-Prod/cdn/2015-02-24/prod20161101-microsoft-windowsazure-gallery/microsoft-ads.linux-data-science-vm-ubuntulinuxdsvmubuntu.1.0.10/Screenshots/Screenshot2.png
Поддержка
Поддержка

Data Science Virtual Machine for Linux (Ubuntu)

Microsoft

Virtual machine with deep learning frameworks and tools for machine learning and data science

The Data Science Virtual Machine for Linux is an Ubuntu-based virtual machine image that makes it easy to get started with deep learning on Azure. The Microsoft Cognitive Toolkit, TensorFlow, MXNet, Caffe, Caffe2, Chainer, NVIDIA DIGITS, Deep Water, Keras, Theano, Torch, and PyTorch are built, installed, and configured so they are ready to run immediately. The NVIDIA driver, CUDA 9, and cuDNN 7 are also included. All frameworks are the GPU versions but work on the CPU as well. Many sample Jupyter notebooks are included. TensorFlow Serving, MXNet Model Server, and TensorRT are included to test inferencing.

The Data Science Virtual Machine for Linux also contains popular tools for data science and development activities, including:

  • Microsoft R Server 9.2.1 with Microsoft R Open 3.4.1, MicrosoftML package with machine learning algorithms, RevoScaleR and revoscalepy for distributed and remote computing, and R and Python Operationalization
  • Anaconda Python 2.7 and 3.5
  • JupyterHub with sample notebooks
  • Spark local 2.2.0 with PySpark and SparkR Jupyter kernels
  • Single node local Hadoop
  • Azure command-line interface
  • Visual Studio Code, IntelliJ IDEA, PyCharm, and Atom
  • H2O, Deep Water, and Sparkling Water
  • Julia
  • Vowpal Wabbit for online learning
  • xgboost for gradient boosting
  • SQL Server 2017
  • Intel Math Kernel Library

You can view a full list of installed tools for the Linux edition here.

https://106c4.wpc.azureedge.net/80106C4/Gallery-Prod/cdn/2015-02-24/prod20161101-microsoft-windowsazure-gallery/microsoft-ads.linux-data-science-vm-ubuntulinuxdsvmubuntu.1.0.10/Screenshots/Screenshot1.png
https://106c4.wpc.azureedge.net/80106C4/Gallery-Prod/cdn/2015-02-24/prod20161101-microsoft-windowsazure-gallery/microsoft-ads.linux-data-science-vm-ubuntulinuxdsvmubuntu.1.0.10/Screenshots/Screenshot1.png
https://106c4.wpc.azureedge.net/80106C4/Gallery-Prod/cdn/2015-02-24/prod20161101-microsoft-windowsazure-gallery/microsoft-ads.linux-data-science-vm-ubuntulinuxdsvmubuntu.1.0.10/Screenshots/Screenshot2.png