Complete monitoring, tuning and troubleshooting tool for Spark
Unravel for Microsoft Azure Databricks provides a complete monitoring, tuning and troubleshooting tool for big data running on Azure environments. Unravel provides granular chargeback and cost optimization for workloads and can help evaluate your cloud migration from on-premises Hadoop to Azure:
- Spark application performance management for Azure Databricks: Data driven intelligence to maximize Spark performance and reliability in the cloud.
- Unified view of Spark provides essential context to DataOps teams: Unravel provides the most complete picture of your data operations for Azure Databricks.
- Accountability - Know exactly what you are using, who’s using it, and what it is costing you: Unravel makes it radically simpler to monitor, tune, monetize, and optimize cluster resources.
For custom pricing or terms, please contact azuremarketplacehelp@unraveldata.com
了解更多
Azure Databricks Datasheet Managing Costs in Azure Databricks Unravel for Azure Datasheet Unravel for Azure Databricks Product Overview Unravel for Azure Databricks Trial Deploying Unravel for Azure Databricks from Azure Marketplace Migrating and Optimizing Data Ops Apps on Microsoft Azure Unravel Cloud Operations Guide Getting the Most From Modern Data Applications in the Cloudhttps://store-images.s-microsoft.com/image/apps.56868.0f1db79e-2f30-4f18-a922-f4ed6d57a41c.e9bffcd4-6e07-4b37-aa93-edd22ed673db.1fe89765-a029-4a2d-8169-d6cc746789e5
https://store-images.s-microsoft.com/image/apps.56868.0f1db79e-2f30-4f18-a922-f4ed6d57a41c.e9bffcd4-6e07-4b37-aa93-edd22ed673db.1fe89765-a029-4a2d-8169-d6cc746789e5
https://store-images.s-microsoft.com/image/apps.59205.0f1db79e-2f30-4f18-a922-f4ed6d57a41c.e9bffcd4-6e07-4b37-aa93-edd22ed673db.a01af58a-c7f6-41e7-80a7-153275d8b35d
https://store-images.s-microsoft.com/image/apps.27391.0f1db79e-2f30-4f18-a922-f4ed6d57a41c.e9bffcd4-6e07-4b37-aa93-edd22ed673db.a136d5ef-7267-4839-9118-9690734b6098
https://store-images.s-microsoft.com/image/apps.21592.0f1db79e-2f30-4f18-a922-f4ed6d57a41c.e9bffcd4-6e07-4b37-aa93-edd22ed673db.50386403-74e6-46b1-a7b4-e117e005ae6b