https://store-images.s-microsoft.com/image/apps.65450.65eb4edb-2447-4e28-ba50-66ffa88ecd93.70db4e7f-5285-4422-82f4-32217dd738e4.7a9739c3-4e1d-41d1-9565-60f1fcb58ead

Azure CycleCloud

microsoft-azure-cyclecloud - Microsoft Internal Team

(13 hodnocení)

Azure CycleCloud

microsoft-azure-cyclecloud - Microsoft Internal Team

(13 hodnocení)

Azure CycleCloud is a tool for orchestrating and managing HPC environments (Slurm, PBS, GridEngine, LSF, HPC Pack, etc.) on Azure.

Azure CycleCloud is an enterprise-friendly tool for orchestrating and managing High Performance Computing (HPC) environments on Azure. With CycleCloud, users can provision infrastructure for HPC systems, deploy familiar HPC schedulers, and automatically size the infrastructure to run jobs efficiently at any scale. Through CycleCloud, users can create different types of file systems and mount them to the compute cluster nodes to support HPC workloads. Azure CycleCloud is targeted at HPC administrators and users who want to deploy an HPC environment with a specific scheduler in mind -- commonly used schedulers such as Slurm, PBS Professional, OpenPBS, LSF, HPC Pack and Grid Engine are supported out of the box. Customers may also bring their own scheduler for auto-scaling support.
https://store-images.s-microsoft.com/image/apps.59653.65eb4edb-2447-4e28-ba50-66ffa88ecd93.af863f36-b114-4f44-b6ed-eb86475bde5b.b9eebef3-8024-4a4c-8ece-aac6d4b56f9e
/staticstorage/8165fe0/assets/videoOverlay_7299e00c2e43a32cf9fa.png
https://store-images.s-microsoft.com/image/apps.59653.65eb4edb-2447-4e28-ba50-66ffa88ecd93.af863f36-b114-4f44-b6ed-eb86475bde5b.b9eebef3-8024-4a4c-8ece-aac6d4b56f9e
/staticstorage/8165fe0/assets/videoOverlay_7299e00c2e43a32cf9fa.png
https://store-images.s-microsoft.com/image/apps.41770.65eb4edb-2447-4e28-ba50-66ffa88ecd93.af863f36-b114-4f44-b6ed-eb86475bde5b.78ee6ed0-0422-4647-938d-23193630ff69
/staticstorage/8165fe0/assets/videoOverlay_7299e00c2e43a32cf9fa.png
https://store-images.s-microsoft.com/image/apps.57036.65eb4edb-2447-4e28-ba50-66ffa88ecd93.70db4e7f-5285-4422-82f4-32217dd738e4.f67903ef-4d46-4ac7-afb2-696fee941404